首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   2篇
大气科学   1篇
地质学   4篇
自然地理   1篇
  2017年   1篇
  2012年   3篇
  2011年   2篇
排序方式: 共有6条查询结果,搜索用时 156 毫秒
1
1.
The climatic variability and the influence of temperature and sea level fluctuations on the earth??s surface configuration during the Holocene are being discussed all over the world. The present study evaluates the palaeo-environmental conditions of western coast of India during this epoch through the analysis of pollen grains embedded in a carbonaceous clay formation (? 0.4?C0.6?m) found sandwiched within the palaeodeposit of sand of Meenachil River basin. The carbon dating revealed that the clay formation has an age of 5786 ± 94 14C yr BP, while the embedded wood samples have the age varying in between 2888 ± 78 and 5780 ± 95 14C yr BP. The overall analysis suggests that the southwestern margin of India had experienced high intensity rainfall during the earlier part of the Atlantic chronozone due to then strengthened Asiatic monsoon, while water stagnation and hydrological modifications were observed during the later part. The dominance of weeds and lesser number of tree elements suggested a drier climate during the end of the Atlantic period. Besides, the morphometric rearrangement of the Meenachil River contemporaneous to the geomorphological modifications of the southwestern coast of India shall be classified into three categories: (1) Pre-Vembanad Lake formation, (2) Contemporaneous to lake formation and (3) Post-Lake formation.  相似文献   
2.
Freshwater lakes in Antarctica fluctuate from ice-free state (during austral summer) to ice-cover state (during austral winter). Hence the lakes respond instantly to the seasonal climate of the region. The Antarctic seasons respond sharply to the glacial and interglacial climates and these signatures are archived in the lake sediments. A sediment core from Sandy Lake, a periglacial lake located in Schirmacher Oasis of East Antarctica records distinct changes in grain-size, C, N, C/N ratios (atomic), δ13COM and δ15NOM contents during the last 36 ky. The contents of the sedimentary organic matter (OM) proxies (Corg ~ 0.3 ± 0.2%, C/N ratios ~9 ± 5 and δ13COM ~?18 ± 6‰) indicate that the OM in this lake sediment is a product of mixing of terrestrial and lacustrine biomass. Distinctly lower contents of Corg (~0.2%) and sand (~50%), low C/N ratios (~8) and depleted δ13COM (~?20‰) during the Last Glacial Maximum (LGM: 32–17 ky BP based on Vostok Temperatures) suggest greater internal (autochthonous) provenance of organic matter and limited terrestrial (allochthonous) inputs probably due to long and intense winters in the Antarctic. Such intense winters might have resulted the lake surface to be ice-covered for most part of the year when the temperatures remained consistently colder than the Holocene temperatures. The denitrification within the lake evident by enriched δ15NOM (>10‰) during Antarctic LGM might have resulted from oxygen-limitation within the lake environment caused by insulated lake surface. The gradual increases in δ13COM, C/N and sand content starting at ~11 ky BP and attaining high values (~?11‰, ~10 and ~80% respectively) at ~6 ky BP together suggest a subtle change in the balance of sources of organic matter between algal and macrophyte/bryophyte nearly 8–9 ky later to the beginning of the deglaciation. Thus the seasonal opening-up of the Sandy Lake similar to the modern pattern started with the establishment of the optimum temperature conditions (i.e., 0 °C anomaly) in the Antarctic, prior to which the lake environment might have remained mostly insulated or closed.  相似文献   
3.
The effect of seasonally reversing monsoons in the northern Indian Ocean is to impart significant changes in surface salinity(SS).Here,we report SS changes during the last 32 kyr in the Lakshadweep Sea(southeastern Arabian Sea)estimated from paired measurements of δ~(18)O and sea surface temperature(SST)using Globigerinoides sacculifer,an upper mixed layer dwelling foraminifera.The heaviest δ~(18)O_(G.sacculifer)(-0.07±0.08‰)is recorded between 23 and 15 ka,which could be defined as the last glacial maxi...  相似文献   
4.
Using 10-year (2001 10) monthly evaporation, precipitation, and sea surface salinity (SSS) datasets, the relationship between local freshwater flux and SSS in the north Indian Ocean (NIO) is evaluated quantitatively. The results suggest a highly positive linear correlation between freshwater flux and SSS in the Arabian Sea (correlation coefficient, R=0.74) and the western equatorial Indian Ocean (R=0.73), whereas the linear relationships are relatively weaker in the Bay of Bengal (R=0.50) and the eastern equatorial Indian Ocean (R=0.40). Additionally, the interannual variations of freshwater flux and SSS and their mutual relationship are investigated in four sub- regions for pre-monsoon, monsoon, and post-monsoon seasons separately. The satellite retrievals of SSS from the Soil Moisture and Ocean Salinity (SMOS) and Aquarius missions can provide continuous and consistent SSS fields for a better understanding of its variability and the differences between the freshwater flux and SSS signals, which are commonly thought to be linearly related.  相似文献   
5.
6.
The effect of seasonally reversing monsoons in the northern Indian Ocean is to impart significant changes in surface salinity (SS). Here, we report SS changes during the last 32 kyr in the Lakshadweep Sea (southeastern Arabian Sea) estimated from paired measurements of d18O and sea surface temperature (SST) using Globigerinoides sacculifer, an upper mixed layer dwelling foraminifera. The heaviest d18OG.sacculifer (–0.07±0.08‰) is recorded between 23 and 15 ka, which could be defined as the last glacial maximum (LGM). The d18OG.sacculifer shift between the LGM and Holocene is 2.07‰. The SST shows an overall warming of 2°C from the LGM to Holocene (28°C to 30°C). However, coldest SSTs are observed prior to LGM, i.e., ~27 ka. The SS was higher (~38 psu) throughout most of the recorded last glacial period (32.5–15 ka). This high salinity together with generally lower SSTs suggests a period of sustained weaker summer or stronger winter monsoons. The deglacial warming is associated with rapid reorganization of monsoons and is reflected in decreased salinity to a modern level of ~ 36.5 psu, within a period of ~5 kyr. This indicates intensification of summer monsoons during cold to warm climate transition.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号